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11.1 Introduction

While atmospheric turbulence imposes severe limitations on the accuracy of wide-angle

astrometric measurements performed from the ground, the limitations are far less severe

for differential measurements over small fields. Performance in this regime is useful for a

number of problems, including the search for extrasolar planets. As an indirect technique,

astrometry measures the transverse reflex motion of the parent star for evidence of an

unseen companion, analogous to radial-velocity measurements, which sense the velocity of

the longitudinal reflex motion.

The astrometric signature of a Jupiter-Sun system, seen from a distance of 10 pc, has an

amplitude of 500 µas (1 mas peak-to-peak), and establishes an upper limit on the accuracy of

astrometric techniques to perform a useful search around nearby stars; single-measurement

accuracies of < 100 µas are needed to search for lower-mass planets as well as to provide

high-confidence detections. The amplitude of the astrometric signature can be written

θ =
m

M

r

L
, (11.1)

where m and M are the planet and star masses, r is the orbital radius, and L is the distance

of the system from the Earth. The signature can also be written
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θ =
m

M2/3

P 2/3

L
, (11.2)

where P is the period of the system. Thus astrometry is most sensitive to planets with large

orbital radii and long periods, and is complementary to the search space for radial-velocity

measurements (Marcy and Butler, 1998).

11.2 Atmospheric Effects

The turbulent atmosphere introduces well-known spatial, temporal, and angular coherence

losses parameterized by the coherence diameter r0, coherence time τ0, and the isoplanatic

angle θ0. For astrometry, we are most interested in how the astrometric error integrates

down with time, which cannot be derived simply from the isoplanatic angle. It is intuitive

that the astrometric error for a differential measurement should decrease with decreasing

field as the atmosphere becomes common mode. The “sweet spot” for such measurement

occurs with a long-baseline interferometer when the star separation is made smaller than the

isokinetic angle B/h, where B is the interferometer baseline and h is an effective atmospheric

height. In this regime, the error behavior is given by (Shao and Colavita, 1992)

σδθ = 300B−2/3θt−1/2 arcsec, (11.3)

where we adopt a particular Mauna Kea atmospheric model. In this equation the error

is given for integration time t in seconds and star separation θ in radians. This result

assumes a strict infinite-outer-scale Kolmogorov atmosphere. Expected deviations from

this behavior generally produce better performance. Thus, for a 20-arcsec star separation

and a 100-m interferometer, the atmospheric error in one hour of integration time should

be less than about 20 µas.

Much more detail on narrow-angle interferometric astrometry is presented by Shao and

Colavita (1992).

11.3 Other Errors

For astrometry, an optical interferometer can be looked at geometrically; the problem is

identical to the case of a radio interferometer (see Thompson et al. 1986). The delay x

measured with the interferometer can be related to the interferometer baseline B and the

star unit vector s as x = B ·s. Thus, measurements of delay in conjunction with knowledge

of the baseline gives the angle of the star with respect to the baseline vector. The measured

delay can be written

x = l + k−1φ, (11.4)

where l is the laser-monitored internal delay, φ is the fringe phase, and k is the wavenumber

of the interfering light.
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We can capture most aspects of the measurement problem by reducing it to two dimensions

and doing a small-angle approximation for sources near normal to the instrument, viz.

θ ' x/B. A trivial sensitivity analysis yields the error in the astrometric measurement to

be

δθ =
δl

B
+ k−1

δφ

B
−

δB

B
θ. (11.5)

The first term incorporates systematic errors in measuring the internal delay; the second

term incorporates errors in measuring the fringe phase, including photon and detector

noise; the third term incorporates errors in measurement or knowledge of the interferometer

baseline.

The long baselines achievable on the ground help reduce the requirements on systematic

error control, which are challenging, but within the state of practice. For example, with

a 100-m baseline, 10-µas systematic accuracy requires a 5-nm total length error. With

differential measurements, certain systematic errors become common mode and do not

affect accuracy. In addition, the astrometric measurement can be performed in a switching

mode, reducing requirements on long-term thermal stability.

The dependence on θ in the third term of Equation 11.5 illustrates the difference in the

requirements on baseline knowledge between wide- and narrow-angle astrometry. For wide-

angle astrometry, θ ' 1, leading to the intuitive result that the required fractional accuracy

on the baseline is equal to the desired astrometric accuracy. However, for small fields, the

requirement on baseline accuracy decreases: essentially, the baseline becomes more common

mode to the differential measurement. For example, for a narrow-angle field of 20 arcsec,

the requirements on the baseline are reduced by a factor of 104 compared with a wide-angle

measurement.

The ability to measure the fringe phase places a limit on the achievable accuracy in a given

integration time. The error δφ in a phase measurement can be written in terms of the

signal-to-noise ratio SNRφ,

δφ = (SNRφ)−1 , (11.6)

where

SNR2

φ '
1

2

N2V 2

N + B + Mσ2
, (11.7)

where N is the total photon count, B is the total background and dark count, σ2 is the read-

noise variance, and M is the number of reads needed to make the phase measurement. The

detection error shows up in the error expression, Equation 11.5, reduced by the baseline.

Thus, long baselines help by reducing astrometric error for a given source brightness, or by

improving sensitivity for a given accuracy.

11.4 Implementing a Narrow-Angle Measurement

Exploiting the tens-of-microarcsec astrometric accuracy possible with a ground-based narrow-

angle astrometric measurement requires the ability to utilize nearby reference stars. One
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Figure 11.1: Dual-star architecture.

approach to this problem uses a dual-star architecture (Shao and Colavita, 1992), as shown

in Figure 11.1. It consists of a long-baseline interferometer with dual beam trains. The light

at each aperture forms an image of the field containing the target star and the astrometric

reference. A dual-star feed separates the light from the two stars into separate beams which

feed separate interferometer beam combiners. These beam combiners are referenced with

laser metrology to a common fiducial at each collector. The two beam combiners make

simultaneous measurements of the delays for the two stars.

Over a small field, reference stars will invariably be faint, and ordinarily would not be usable

by the interferometer. However, searching for exoplanets is a unique problem in that the

target star is nearby, and hence bright, and can serve as a phase reference. With phase

referencing, the bright target star is used as a probe of the atmospheric turbulence within

the isoplanatic patch of the target star. By compensating for the fringe motion of the target

star with an optical delay line, the fringe motion of the faint astrometric reference star is

frozen, allowing for long integration times which greatly increase sensitivity.

The radius of the isoplanatic patch increases with wavelength, and is 20–30 arcsec at 2.2 µm.

With phase referencing and 1.5–2.0-m telescopes, astrometric references can be detected

around most potential planetary targets.

Conducting a narrow-angle measurement with an architecture like that of Figure 11.1 in-

volves two steps. The first step is wide-angle astrometry using known reference stars to

solve for the interferometer baseline. As discussed above, the required baseline precision

for a narrow-angle measurement is much less than for a wide-angle measurement, and the

accuracies available from these wide-angle measurements provide sufficient accuracy. There

are some subtleties regarding the wide-angle baseline as thus solved and the narrow-angle
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baseline applicable to the science measurement, and an auxiliary system may be required

to tie these two baselines together.

The second step is to implement the measurement through chopping. In this approach,

one interferometer beam combiner always tracks the target star. The other beam com-

biner switches repeatedly between the target star and the reference star. This “chopping”

approach requires instrument stability only over the chop cycle. The use of even a low-

resolution spectrometer in the fringe detector makes the ground-based measurements rela-

tively insensitive to differential chromatic refraction.

In general, measurements on two orthogonal baselines are needed to detect systems with

arbitrary inclinations. Measurements with respect to two reference stars are also desir-

able; with redundant measurements, astrometric noise in a reference star is, in most cases,

separable from the desired (planetary) signature.

The Palomar Testbed Interferometer (Colavita et al., 1999) was designed to demonstrate

most aspects of narrow-angle astrometry for application to one of the key science modes of

the Keck Interferometer (Colavita et al., 1998; van Belle et al., 1998). Recent results from

PTI demonstrate a night-to-night repeatability of 100 µas on a bright visual binary (Boden

et al., 2000).

11.5 Conclusion

Long-baseline interferometers can exploit the behavior of the atmosphere over a small field

to conduct high-accuracy measurements for applications such as exoplanet detection. The

particular nature of this problem, i.e., that the target is bright and serves as a phase refer-

ence, allows cophasing the interferometer to obtain high sensitivity within the isoplanatic

patch. While astrometry at the full accuracy allowed by the atmosphere is challenging, the

long baselines achievable on the ground help moderate the effects of fringe-detection noise

and systematic errors attributable to metrology and baseline knowledge.
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